

Section 22a

Validation of NASA's First Autonomous Formation Flying Experiment

. . . David Folta / John Bristow

Flight Dynamics Analysis Branch, NASA Goddard Space Flight Center

... Albin Hawkins / Greg Dell

a.i. solutions, Inc.

EO-1 GSFC Formation Flying New Millennium Requirements

Enhanced Formation Flying (EFF)

The Enhanced Formation Flying (EFF)
 technology shall provide the autonomous
 capability of flying over the same ground track
 of another spacecraft at a fixed separation in
 time.

Ground track Control

 EO-1 shall fly over the same ground track as Landsat-7. EFF shall predict and plan formation control maneuvers or ∆a maneuvers to maintain the ground track if necessary.

Formation Control

 Predict and plan formation flying maneuvers to meet a nominal 1 minute spacecraft separation with a ±6 seconds tolerance. Plan maneuver in 12 hours with a 2 day notification to ground.

Autonomy

 The onboard flight software, called the EFF, shall provide the interface between the ACS / C&DH and the AutoCon™ system for Autonomy for transfer of all data and tables.

Formation Flying Maintenance Description

Landsat-7 and EO-1

EFF GSFC (FQ) Algorithm

- Find (R_0, V_0) at time t_0 on the reference path Current State
- Find (R_1, V_1) at time t_1 on the transfer path Target State
- Project (R_1, V_1) through $(-\Delta t)$ to find (r_0, v_0) at time t_0 'Wished' State without AV
- Compute δr_0 from $(R_0 r_0)$ and δv_0 from $(V_0 v_0)$ at time t_0

EFF GSFC (FQ) Algorithm

• Compute the matrices $[R(t_1)]$, $[R(t_1)]$ according to the following:

$$\Phi(t_0, t_1) = \begin{bmatrix} \Phi_1(t_0, t_1), \Phi_2(t_0, t_1) \\ \Phi_3(t_0, t_1), \Phi_4(t_0, t_1) \end{bmatrix} = \begin{bmatrix} \widetilde{R}^*(t_0), R^*(t_0) \\ \widetilde{V}^*(t_0), V^*(t_0) \end{bmatrix} = \begin{bmatrix} V^T(t_1), -R^T(t_1) \\ -\widetilde{V}^T(t_1), \widetilde{R}^T(t_1) \end{bmatrix} = \Phi(t_1, t_0)^{-1}$$

$$\begin{bmatrix} \mathbf{R}(t_1) \end{bmatrix} = \frac{\mathbf{r}_0}{\mu} (1 - \mathbf{F}) [(\mathbf{R}_1 - \mathbf{r}_0) \mathbf{v}_0^T - (\mathbf{V}_1 - \mathbf{v}_0) \mathbf{r}_0^T] + \frac{C}{\mu} [\mathbf{V}_1 \mathbf{v}_0^T] + G[\mathbf{I}]$$

$$\begin{bmatrix} \widetilde{R}(t_1) \end{bmatrix} = \frac{\mathbf{R}_1}{\mu} [(\mathbf{V}_1 - \mathbf{v}_0)(\mathbf{V}_1 - \mathbf{v}_0)^T] + \frac{1}{\mathbf{r}_0^3} [\mathbf{r}_0(1 - \mathbf{F}) \mathbf{R}_1 \mathbf{r}_0^T + C \mathbf{V}_1 \mathbf{r}_0^T] + F[\mathbf{I}]$$

where F and G are found from f & g series through Universal Variables

◆ Compute the 'velocity-to-be-gained' (Dv₀) for the current cycle.

 $[R^*(t_0)]$ from $[-R^T(t_1)]$, $[V^*(t_0)]$ from $[R^T(t_1)]$, & $[C^*(t_0)]$ from $[V^*(t_0)]$ $[R^*(t_0)]^{-1}$

$$\Delta V = \left[C^*(t_0) \right] \delta r_0 - \delta v_0$$

AutoCon™ Functional Description

Mission Technology Forum

Subsystem Level

EFF Control Modes Transition Diagram

EFF Verification Approach

Level-1: AutoCon-G

 Using a PC environment to develop, test, provide high fidelity simulations, script development, and proof of concept Fuzzy Logic rules.

◆ Level-2: Flight Software (FSW) Test Facility

 Using Mongoose Breadboard with FSW, test all interfaces to the ACS and C&DH for telemetry and commanding. Utilized Simulated Tensor Data and noise. Test results compared to similar AutoCon-G results.

◆ Level-3: Spacecraft

 Using Spacecraft Mongoose, etc., test against actual CPU loading, GPS Constellation Simulator and Tensor, etc. Test results compared with FSW Test Facility results

EFF Test Results

AutoCon-F/G Benchmark Testing

- AutoCon-F was benchmarked against AutoCon-G and Windows AutoCon-F for each build
- Additional AutoCon-G runs against 200 days of Landsat-7 operations

◆ EFF/AutoCon-F MG5 Testing

- Will it fit in RAM and execute fast enough on the EO-1 MGV Processor
- EFF/AutoCon-F interface and numerical accuracy testing performed on the test string from October 1998 to February 2000

◆ EFF/AutoCon-F Testing on EO-1 (>20 Hours of Testing Onboard)

- EFF/AutoCon-F successfully executed on EO-1 in April 1999
- Round 1 of CPT in July found increasing time required for maneuver planning and unacceptable CPU utilization
- Round 2 of CPT on September 1999 passed all test criteria
- Round 3 of CPT on December 1999 passed all test criteria
- Round 4 of CPT on January 2000 passed all test criteria
- EFF/AutoCon-F successfully executed during Thermal Vacuum in October 1999

EFF CPT Test Results

AutoCon-F GPS Smoother Testing

- Conducted on the Test String Using Simulated Tensor Data
- Tested on Spacecraft in December 1999 Using Real Tensor
 Data with Simulated GPS Constellation. Smoother frequently
 restarted acquisition due to numerous zero filled packets.
 Smoothing cycle unable to complete.
- Retest on Spacecraft in February 2000. Smoothing cycle completed successfully. Results Indicate Correct Filtering and Improved Navigation Accuracy

Criteria Passed

- GSFC Targeter Produces Valid Maneuver Plan
- GSFC Targeter Maneuver Consistently Reproduced
- JPL Targeter Code Uploaded
- JPL Targeter Produces Valid Maneuver Plan
- CPU Utilization Within Limits

Configuration Changes

- EFF Tested During S/C CPT
 - Parsing of execution to minimize CPU utilization Logic Error
 - Code changes for step size control of propagator Code Error
 - Storing of Spacecraft State Table
 Initialization Error
 - GPS Leap Second Sign change- Logic Error
- EFF Tested in Thermal Vacuum
 - No Changes Made
- Positive Independent Verification Of EFF made using test bed and ground software, AutoCon-F/G
- Upgrades made to Targeter (Delta-v Correction in 2nd Burn) to compensate for the maneuver quantization made by the onboard ACS software for Maneuver duration.
 - Minimum code change for maneuver quantization and target state generation
 - Targeter executed over 57000 cases to evaluate accuracy over various orbit and targeting conditions

EFF Control Modes (1 of 2)

◆ Idle

- Pending on incoming data and send it to the bit bucket.
- Otherwise <u>do nothing</u>
- Monitor (AutoCon can Execute with maximum safety for S/C)
 - Invoke AutoCon only
 - Just report maneuver planning data to ground
 - No maneuver commands are generated
- Manual (AutoCon can Execute with Ground as safety)
 - Generate maneuver commands (table loads) and send to ground only
 - All burns <u>must be commanded from the ground</u> in their entirety
 - Ground can loopback command from EFF telemetry if desired to execute burn
- ◆ Semi-Autonomous (Ground still in loop for go/nogo)
 - Send maneuver commands (table loads) to the SCP
 - Do not enable ATS,RTS in SCP of C&DH
 - Must switch to Commit Mode to allow loaded burn to execute
 - Inaction will cause loaded burn to expire

EFF Control Modes (2 of 2)

- Commit (allow an EFF loaded burn to execute)
 - Enable ATS and RTSs in SCP to permit loaded burn to be executed
 - Required at least two hours before time of burn
 - Autonomously switch to Semi-Autonomous Mode upon completion
- Abort (abort an EFF loaded burn and clean up)
 - Disable the ATS and RTSs in SCP to prevent execution of burn
 - Clean up from any preparation for burn
 - Autonomously switch to Manual Mode upon completion
- ◆ Autonomous (allow EFF to control the orbit)
 - Closed loop orbit maintenance.
 - Use Commit Mode to switch back to Semi-Autonomous Mode and not abort a planned burn
 - Ground can still monitor with 24 hour notice to burn
 - Switch to Semi-Autonomous Mode after N burns. Safety for unattended operation

Launch

- EFF Idle
- Collect and analyze GPS Data

Checkout

- EFF Monitor Check GPS Smoother
- EFF Monitor Check Targeter Planning
- EFF Monitor Compare Onboard Plan with routine Ops
- EFF Manual Compare plans and submit AutoCon-F to execute burn pair

Routine Ops

- EFF Semi-Auto Compare and allow to execute Maneuver
- EFF Autonomous N=1, N=?

Execution Scenario

- Flight interface every 1 second
 - Read ACS, GPS, and ACE data
 - Thin data and extract significant events
- ◆ EFF/GSFC executes every 12 hours or EFF/JPL executes continuously
 - Decide if Maneuver required
 - If required, calculate desired maneuver and generate commands
- **♦** Executes to capture significant events
 - Equator crossings
 - Time elapsed
 - Landsat-7 State Vector

Onboard Algorithm Validation

Mission Technology Forum

EO-1 Spacecraft
EFF/AutoCon
ACS
GPS

- All validation objectives can be met by independent ground comparison. Conforms to ground independent checking using AutoCon-G & FreeFlyer or the FF test bed using AutoCon-F.
- Execute algorithm onboard with known input data values and allow ground AutoCon to process the data using the Fuzzy Logic Control Algorithms.
- Algorithms will compute the required ΔV and Onboard will notify ground through AutoCon telemetry of maneuver parameters.
- The validation will show that the algorithm logic performs properly, computing intermediate parameters, guidance matrices, maneuver quarterion, and body frame ΔV .
- In monitor/maneuver mode: collect tensor data and compare against ground smoother, change script to generate maneuver plan every six hours (26 burns plans per week) for consistency check

EFF Verification Matrix

Test Phase	Test Description	Completed	Passed
Phase I (Development)			
D-1 : Propagation with forces	Correct Prop Models	2/17/99	Yes
D-2 : Two-body propagation	Targeter Prop Model	2/17/99	Yes
D-3 : Conditional constraint check	Formation Constraints	2/17/99	Yes
D-4 : GSFC targeter	Folta/Quinn Algorithm	2/17/99	Yes
D-5 : JPL targeter	JPL Algorithm	2/17/99	Yes
D-6 : O-C maneuver calibration	DV Calibration via States	2/17/99	Yes
D-7 : Data smoother	GPS Position Smoother	2/16/99	Yes
Phase II (Simulation)			
S-1 : Propagation with forces	Correct Prop Models	2/22/99	Yes
S-2 : Two-body propagation	Targeter Prop Model	2/22/99	Yes
S-3 : Conditional constraint check	Formation Constraints	2/22/99	Yes
S-4 : GSFC targeter	Folta/Quinn Algorithm	2/22/99	Yes
S-5 : JPL targeter	JPL Algorithm	6/28/99	Yes
S-6 : O-C maneuver calibration	DV Calibration via States	2/22/99	Yes
S-7 : Data smoother	GPS Position Smoother	2/17/99	Yes
Phase III (Flight)			
F-1 : GSFC targeter	Folta/Quinn Algorithm	9/1/99	Yes
F-2 : GPS Data Smoother	GPS Position Smoother	2/00	Yes
F-3 : JPL targeter upload & exec	Upload of JPL algorithm	9/1/99	Yes

CPT Test Timeline

- ◆ 2353L EFF_cpt.prc started
- ◆ 0004L Table upload complete
- ◆ 0016L GSFC targeter produced first maneuver plan
- ◆ 0025L GSFC targeter produced identical maneuver replan
- ◆ 0025L JPL targeter code uploaded started
- ♦ 0115L JPL targeter code upload completed and JPL maneuver planning started
- ◆ 0200L JPL targeter produced maneuver
- ◆ 0201L GSFC targeter tables started being reloaded
- 0208L GSFC targeter table upload completed and GSFC targeting restarted
- 0217L GSFC targeter produced identical maneuver replan
 - 0220L Test complete. EFF left running on spacecraft to simulate a heavy load on the spacecraft for the remaining CPT testing.

Sample Maneuver Scenario

Mission Technology Forum

•	Burn #1 - 24 Hours Setup by EFF	Load ATS and RTSs - (to SCP) Turn on EVD Thruster Driver Board - (to ACE)
•	Burn #1 - > 2 Hours	Ground confirms Burn(s), Enable ATS, and RTSs - (to SCP) or Commit to EFF or Autonomous EFF
•	Burn #1 - 90 Minutes	Enable CATBED Heaters - (to ACE) Reset ACS Thruster Counters - (to ACS)
•	Burn #1 - 6 seconds	Enable thrusters - (to ACE)
•	Burn #1	Delta-V command (to ACS)
•	Burn #1 + 1 minute	Disable thrusters - (to ACE)
•	Burn #2 - 6 seconds	Enable thrusters - (to ACE)
•	Burn #2	Delta-V command (to ACS)
•	Burn #2 + 1 minute	Disable thrusters - (to ACE)
•	Burn #2 + 90 seconds if #2 not required then Burn #1 + 90 sec	Disable CATBED Heaters - (to ACE) EVD Thruster Driver Board Off - (to ACE) Disable Delta-V transition - (to ACS) Disable RTSs - (to SCP)

Launch - 1 Month

1 - 2 Months

> 2 Months - 1 Year

Ground Ops Verification Onboard Cmd
Generation Verification

Autonomous

General Test

- AutoCon Exec
- ◆ Fuzzy Logic
- ◆ Maneuver Decision
- Maneuver Planning

Ground Ops Verification

- ◆ Onboard General Test: Input / Output / Uploads, etc.
- ◆ I/F Verification with ACS / C&DH / GPS for data and telemetry
- Algorithm verification, maneuver plans and calibration
- Pre-maneuver Cmd validation

Closed Loop

- Onboard Generation of Commands
- ◆ Post Maneuver

Earth Observing-1

Mission Technology Forum

Continuous mode operations

- Ingest a GPS state
- Propagate to 12 hours
- Compute a maneuver at epoch based on default target
- Propagate to 24 hours
- Compute a maneuver at epoch based on default target
- Propagate to 48 hours
- Compute a maneuver at epoch based on default target
- Compare onboard ∆V and propagation states to
 - Ground Based AutoCon using GPS states with same onboard script
 - Original Matlab M-file using states from telemetry data

Some Validation Notes

- Maintenance ΔVs are computed as alongtrack and 3-D with the alongtrack component the applied ΔV
- ◆ Finite burn maneuver durations are quantized to 1 second to meet propulsion system requirements
- ◆ Second maneuver is computed from a velocity difference of predicted and targeted velocities after applying the first FQ ∆V and an internal propagation. Also takes quantization into account.
- ◆ Maneuver magnitude ranged from 0.5cm/s to 2m/s for alongtrack and from 1.6m/s to 133m/s for the 3-D

Earth Observing-1

Percentage Difference in EO-1 Onboard & Ground ∆Vs

Percentage Difference in 3-D EO-1 ΔVs

22a - 25

Percentage Difference In Original Algorithm & Onboard

Orbit Propagator Errors for Position & Velocity at 1.5 Orbits

- ◆ Position Mean = 0.79 m
- ◆ Position StDev = 0.37 m
- ♦ Velocity Mean = 0.84 m/s
- Velocity StDev = 0.39 m/s

Difference in EO-1 Onboard & Ground Maneuver Quantized ∆Vs

Mode	Onboard ∆V1	Onboard ∆V2	Ground ∆V1	Ground ∆V2	% Diff ∆V1	% Diff ∆V2
			Difference	Difference	vs. Ground	vs. Ground
	cm/s	cm/s	cm/s	cm/s	%	%
Auto	4.9854078	0.0000000	0.000001	0.0000000	0.00015645	0.00000000
Auto	2.4376271	3.7919202	0.0000003	0.0000002	0.00111324	0.00053176
Semi-Auto	1.0831335	1.6247106	0.0000063	0026969	0.05852198	-14.2361365
Semi-Auto	2.3841027	0.2649020	0.0000000	0.0000000	0.00011329	0.00073822
Semi-Auto	5.2980985	1.8543658	-0.0008450	-0.0002963	-1.56990117	-1.57294248
Manual	2.1915358	5.2049883	0.0000004	-0.0332099	0.00163366	-0.00022414
Manual	3.5555711	7.9318735	-0.0000003	-0.0272687	-0.00081327	3.57089537

Note: A final fully autonomous GPS derived maneuver was performed June 28, with preliminary validation results yielding a 0.005% difference in quantized ΔV and similar results in 3-axis

Difference in EO-1 Onboard & Ground Maneuver 3-Axis \(\Delta V s \)

Mode	Onboard ∆V1	Ground ∆V1	3-axis	Algorithm	3-Axis
		Difference	∆V1 vs. Gnd	∆ V1 Diff	∆V1 vs. Alg
	m/s	cm/s	%	cm/s	%
Auto	10.8468	-0.0005441	-0.0000502	0.0003217	0.0000297
Auto	11.8633	0.0178726	0.0015066	-0.0101756	-0.0008577
Semi-Auto	12.6416	0.0311944	0.0024677	0.0091362	0.0002867
Semi-Auto	14.7610	0.1888158	0.0127932	0.0000000	0.0001196
Semi-Auto	15.3797	-0.2526237	-0.0164231	-0.0633549	-0.0045164
Manual	15.5790	10.4109426	0.6682668	-0.0117851	-0.0007565
Manual	15.4749	0.0018465	0.0001193	-0.0307683	-0.0021934

Difference in Position for Desired & Target States

Formation Data from Definitive Navigation Solutions (1 of 3)

460

EO1.AlongTrackSeparation (Km)

470

480

Radial vs. alongtrack separation over all formation maneuvers (range of 425-490km)

Groundtrack separation over all formation maneuvers maintained to 3km

450

430

440

Formation Data from Definitive Navigation Solutions (2 of 3)

Mission Technology Forum

EO1. Elapsed Days (Days)

Alongtrack separation vs. Time over all formation maneuvers (range of 425-490km)

Semi-major axis of EO-1 and Landsat-7 over all formation maneuvers

25

Formation Data from Definitive Navigation Solutions (3 of 3)

Frozen Orbit eccentricity over all formation maneuvers (range of .001125 -0.001250)

Frozen Orbit w vs. eccentricity over all formation maneuvers with range of 90+/- 5 deg.

Summary / Conclusions

- ◆ A demonstrated, validated fully non-linear autonomous system for formation flying
- ◆ A precision algorithm for user defined control accuracy
- A point-to-point formation flying algorithm using discretized maneuvers at user defined time intervals
- ◆ A universal algorithm that incorporates
 - Intrack velocity changes for semi-major axis control
 - Radial changes for formation maintenance and eccentricity control
 - Crosstrack changes for inclination control or node changes
 - Any combination of the above for maintenance maneuvers

Summary / Conclusions

- A system that incorporates fuzzy logic for multiple constraint checking for maneuver planning and control
- ◆ Single or multiple maneuver computations
- Multiple / generalized navigation inputs
- Attitude (quaternion) required of the spacecraft to meet the ∆V components
- Proven executive flight code

Bottom Line:

Enabling Future Formation Flying / Multiple
Spacecraft Missions